Output8 = Dense(1, activation = 'sigmoid')(x) Output7 = Dense(1, activation = 'sigmoid')(x)
Output6 = Dense(1, activation = 'sigmoid')(x)
Output5 = Dense(1, activation = 'sigmoid')(x) Output4 = Dense(1, activation = 'sigmoid')(x) Output3 = Dense(1, activation = 'sigmoid')(x) Output2 = Dense(1, activation = 'sigmoid')(x) Output1 = Dense(1, activation = 'sigmoid')(x)
I am training a multilabel classifier in keras ,i want to convert that to pytorch, i am mostly confused about how to handle the loss ,this is what the code looks like model = 121(include_top=False, input_shape=(224, 224, 3))